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A theory of a posteriori estimation of modeling errors in local quantities of in-
terest in the analysis of heterogeneous elastic solids is presented. These quantities
may, for example, represent averaged stresses on the surface of inclusions or molli-
fications of pointwise stresses or displacements or, in general, local features of the
“fine-scale” solution characterized by continuous linear functionals. These estima-
tors are used to construct goal-oriented adaptive procedures in which models of the
microstructure are adapted to deliver local features to a preset level of accuracy. Algo-
rithms for implementing these procedures are discussed and preliminary numerical
results are given. The analysis is restricted to linear, static, heterogeneous, elastic
materials. c© 2000 Academic Press
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1. INTRODUCTION

The idea of automatically adapting characteristics of mathematical and computational
models of heterogeneous media to obtain results of a specified level of accuracy was ad-
vanced in recent work onhierarchical modeling[8, 12]. In these papers, a posteriori bounds
on the error in solutions to elastostatics problems induced by replacing fine-scale microme-
chanical properties by coarser scale or effective properties were derived in global energy
norms. These error estimates were then used as a basis for anadaptive modeling processin
which only enough fine-scale information sufficient to deliver results of a preset accuracy,
measured in energy norms, is used to characterize the model. The resulting adaptive process
can lead to significant computational savings, making possible the analysis of microme-
chanical effects in some cases that are intractable by traditional approaches. Preliminary
results on extensions of these adaptive approaches to a class of models depicting material
damage were discussed in [7].

It is clear that adaptive procedures based on energy-norm estimates may be insensitive to
very localized features of the fine-scale solution. Modeling error in characterizing average
stresses on interfaces or on surfaces of inclusions, for example, may not be detected by
energy-norm estimates unless virtually all of the fine-scale information is used in defining
the computational/mathematical model. To efficiently control the accuracy of models of
such local features, local estimates of modeling error are required.

In the present paper, we extend the theory of a posteriori modeling error estimation
for heterogeneous materials to “quantities of interest,” by which we mean local features
of the response. In our theory, these quantities of interest could represent, for example,
average stresses on material interfaces, boundary displacements, or mollified pointwise
displacements, strains, or stresses. We remark that many candidates for local quantities of
interest are, in fact, quantities that one actually measures in assessing mechanical response—
strains at points as averaged relative displacements over a strain gauge, local stresses as
forces distributed over interior surfaces, etc. More is said about such quantities of interest
in Sections 3 and 5. Mathematically, a quantity of interest is any feature of the fine-scale
solution that can be characterized as a continuous linear functional on the space of functions
to which the fine-scale solution belongs. We establish computable upper and lower bounds
and sharp estimates of the errors in such quantities.

With local error estimates available, we developgoal-oriented adaptive procedures, in
which the model is automatically adapted to deliver local quantities of interest to within a pre-
set level of accuracy. These procedures are reminiscent of recently developed goal-oriented
adaptive procedures for controlling numerical approximation error in linear functionals [9].
In the present investigation, we present an adaptive procedure that, in principle, utilizes only
information on fine-scale structures in a neighborhood of the local feature of interest suffi-
cient to produce results of preset level of accuracy; information outside this neighborhood
need only reflect the response of models defined using effective, homogenized properties
of the material.

Some basic features and assumptions underlying the approaches described here should
be noted:

1. By an exact, fine-scale model, problem, or solution, we mean the exact solutionu to a
weak boundary value problem in elastostatics in which the elastic coefficients are character-
ized by a possibly rapidly varying elasticity tensorE = E(x) which is known a priori. The
modeling errore is the function defined as the difference betweenu and any coarse-scale
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solutionũ to an elastostatics problem defined on the same domain, subjected to the same
external forces as the fine-scale problem, but with a different elasticity tensorẼ as coeffi-
cients in the problem:e= u− ũ. The functionũ, for example, could be the “homogenized
solution” u0, the solution of the problem in which effective properties, characterized by a
constant or piecewise constant “homogenized” elasticity tensorE0, are used.

2. In applications of our theory and algorithms, the coarse-scale solutions are gener-
ally computed using various numerical methods, such as finite elements. But estimation
of numerical error is not considered in this paper; the techniques developed in [1, 9] can
be used to control approximation error. Our concern here ismodeling errorin the sense
discussed above, and this error can have properties and behavior quite different from those
of numerical approximation error.

3. In theory, the tensor fieldE(x) defines at almost every pointx in the body an array
(Ei jkl (x)) with the standard ellipticity and symmetry properties. In our applications,E is
generally piecewise constant, representing a so-calledn-phase material withn isotropic
phases,n > 1. For a large class of such materials, it is possible to represent the function
E characterizing the fine-scale microstructure with sufficient accuracy using actual X-ray
computed tomography (CT) imaging procedures with the overall model adaptivity package
to characterizeE. The important details of this feature of adaptive modeling are the subject
of a companion paper [11]. As will be seen later in this paper, only CT data sufficient to de-
fineE = E(x) in local neighborhoods of features of interest are needed; the enormous data
storage requirements of a global characterization ofE called for in earlier global approaches
are, in general, not needed in the goal-oriented adaptivity approaches advocated here.

4. It is important to emphasize that our goal isnot to estimate effective properties of het-
erogeneous materials. Indeed, the familiar process of homogenization of fine-scale features
of the coefficients is here only a mathematical artifact embedded in a broader computational
strategy. Our error estimates and adaptive procedures apply to modeling errors in any kine-
matically admissible function, independent of the coefficients, so long as the underlying
problem is well posed. Nevertheless, the choice of approximations or regularizations ofE
will obviously affect modeling error and rates of convergence of the adaptive process to
models delivering results with the target accuracies.

5. Extensions of our adaptive procedures to nonlinear problems are possible, although
such extensions are not considered here. These extensions could involve incorporating the
goal-oriented adaptive process as an inner loop in a broader iterative process, assuming
that the regularized problem remains well defined. In effect, such extensions amount to
redefining the level of sophistication of the model used as a datum for error estimation.

In the next section, we describe the model class of problems and lay down notations and
preliminaries. We then establish a series of results on local estimates of errors in quantities
of interest, including upper and lower bounds on errors. This is followed by the description
of a goal-oriented adaptive modeling algorithm. An analysis of the algorithm and results
of preliminary numerical implementations are then presented. The detailed description of
a computational environment designed to automate such procedures and the interface with
imaging and visualization modules is the subject of forthcoming work [11].

2. NOTATIONS AND PRELIMINARIES

We consider an open boundedÄ ⊂ RN , N = 1, 2, or 3, with boundary∂Ä. In general,
Ä can be multiconnected and very irregular, but for present purposes, it suffices to takeÄ
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to be Lipschitz with piecewise smooth boundaries. We denote byHm(Ä),m≥ 0, the space
of functions with distributional derivatives of order≤m in L2(Ä) and we use the notation

Hm(Ä)
def= (Hm(Ä))N andL2(Ä)

def= (L2(Ä))N .
The closure ofÄ is the region occupied by a linearly elastic material body in static

equilibrium under the action of body forcesf ∈ L2(Ä) and surface tractionst ∈ L2(0t ),
with 0t ⊂ ∂Ä. The displacementsu of the body are prescribed as zero on0u = ∂Ä\0t .
The space of admissible functionsV(Ä) is therefore defined as

V(Ä) def= {v : v ∈ H1(Ä), v|0u = 0}, (1)

the boundary values being understood in the sense of traces ofH1 functions. In general,
we will assume that meas0u > 0; otherwise, our development is only altered by replacing
V(Ä) with V(Ä)\R(Ä),R(Ä) being the linear space of infinitesimal rigid motions of the
body.

The total potential energy of the body is characterized by the functional

J : V(Ä)→ R

J (v) def= 1

2
B(v, v)− F(v),

(2)

whereB(·, ·) is the symmetric, positive-definite, bilinear form,

B : V(Ä)× V(Ä)→ R

B(u, v) def=
∫
Ä

∇v : E∇u dx,
(3)

andF(·) is the linear functional,

F : V(Ä)→ R

F(v) def=
∫
Ä

f · v dx+
∫
0t

t · v ds.
(4)

It is also convenient to introduce the weighted inner product((·, ·))E on (L2(Ä))N2×
(L2(Ä))N2

defined by

((A,B))E
def=
∫
Ä

A : EB dx (5)

for tensor fieldsA, B. Then,B(u, v) = ((∇v,∇u))E and

((∇v,∇v))E = B(v, v) = ‖v‖2E(Ä), (6)

where‖·‖E(Ä) is theenergy normof v.
In (3), E ∈ (L∞(Ä))N2×N2

is the uniformly elliptic tensor of elasticities which satisfies
the standard symmetry conditions:Ei jkl (x) = Ejikl (x) = Ei jlk (x) = Ekli j (x), for a.e.x in
Ä, 1≤ i, j, k, l ≤ N. The notation (:) denotes contraction of second-order tensors (∇v :
E∇u = vi, j Ei jkl uk,l , summing oni, j, k, l , vi, j = ∂vi /∂xj ; uk,l = ∂uk/∂xl ). There, also,
dx = dx1 dx2 · · ·dxN is the volume measure andds the surface element.
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The material characterized byE is assumed to have a complex, not necessarily periodic
microstructure so thatE is a highly oscillatory function of positionx overÄ.

2.1. The Fine-Scale Problem

Under the stated assumptions, the displacement fieldu ∈ V(Ä) that exists when the body
is in static equilibrium under the action of external forces (f, t) is the unique admissible
displacement that minimizesJ overV(Ä) and is the unique solution to the following weak
boundary value problem:

Findu ∈ V(Ä) such that

B(u, v) = F(v) ∀ v ∈ V(Ä).
(7)

We shall refer to (7) as thefine-scale problemsince it involves all the fine-scale features
of the material, and to its solutionu as thefine-scale solution. In the sense of distributions,
(7) is equivalent to the elliptic system,

−∇ · σ = f
σ = Eε

2ε = ∇u+∇uT

u = 0 on0u

σ · n = t on0t ,

(8)

wheren is the unit outward normal to∂Ä, andσ andε are the stress and strain tensor fields,
respectively.

2.2. The Regularized Problem

Various regularizations of problem (9) are obtained by replacingE with a regularized
elasticity tensor. For example, if the microstructure is assumed to be periodic, it is common
practice to replaceE with a homogenized elasticity tensorE0, definingeffective proper-
ties of the material, usually a constant tensor. For details on homogenization of periodic
composites, see [4, 10]. Another approach used to regularize heterogeneous materials as-
sumes the existence of a representative volume element (RVE); see, for example, [3]. Our
approach, however, does not rely on the existence of an RVE for a given heterogeneous
material. Without restricting ourselves to a constant function, we assume that the elasticity
tensorE is replaced by a suitable approximationE0 that satisfies the uniform ellipticity and
symmetry conditions. We then can consider theregularizedor homogenized problem,

Findu0 ∈ V(Ä) such that

B0(u0, v) = F(v) ∀v ∈ V(Ä),
(9)

where now

B0(u0, v) def=
∫
Ä

∇v : E0∇u0 dx, (10)

andF(·) is again given by (4). The unique solutionu0 to (9) is called theregularizedor
homogenized solution.
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2.3. Review of Energy Estimates of the Modeling Error

The modeling error is defined as the difference between the fine-scale solution and the
regularized solution

e0 def= u− u0. (11)

We now review two results of the estimation of this error in the energy norm. For this
purpose, we define

I0 = (I − E−1E0), (12)

where I is the identity tensor. Next, forg ∈ V, we define the associated linearresidual
functionalRg : V(Ä)→ R,

Rg(v) = −
∫
Ä

∇v : EI0∇gdx, v ∈ V(Ä). (13)

THEOREM2.1. Letu andu0 be the solutions to problems(7) and(9), respectively. Then
the following holds,

ζlow ≤ ‖e0‖E(Ä) = ‖u− u0‖E(Ä) ≤ ζupp, (14)

where

ζlow
def= |Ru0(u0)|
‖u0‖E(Ä) , ζupp

def= ((I0∇u0, I0∇u0))
1/2
E . (15)

For proofs, see [12] and [6]. Both assertions follow from the fact that the modeling error
e0 is governed by

B(e0, v) = Ru0(v), ∀v ∈ V(Ä). (16)

Using the above result, it is possible to estimate the energy norm of the difference between
the fine-scale solutionu and any admissible functionz ∈ V(Ä).

COROLLARY 2.1. Let u andu0 be the solutions to problems(7) and (9), respectively,
and letz ∈ V(Ä)\{0}. Then,

ζ z
low ≤ ‖u− z‖E(Ä) ≤ ζ z

upp, (17)

where

ζ z
low

def= |F(z)− B(z, z)|‖z‖E(Ä)
, ζ z

upp
def=
√

2(J (z)− J (u0))+ ζ 2
upp, (18)

withJ as defined in(2).
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Proof. The proof for the assertion‖u− z‖E(Ä) ≤ ζ z
upp can be found in [8]. For the lower

bound, we have

B(u− z, v) = F(v)− B(z, v) ∀ v ∈ V(Ä). (19)

Then, it is straightforward to show that

‖u− z‖E(Ä) = sup
v∈V(Ä)\{0}

|F(v)− B(z, v)|
‖v‖E(Ä)

, (20)

and by pickingv = z, we obtain

‖u− z‖E(Ä) ≥ |F(z)− B(z, z)|‖z‖E(Ä)
, (21)

which concludes the proof.■

3. MODELING ERROR IN LOCAL QUANTITIES OF INTEREST

As mentioned in the Introduction, global estimates of modeling error, such as the energy
estimate presented in Theorem 2.1, can be insensitive to local quantities of interest such
as interfacial stresses. To address this problem, we now present a theory for the estimation
of modeling error in quantities of interest that can be characterized as continuous linear
functionals on the space of admissible functionsV(Ä). This theory represents a significant
departure from more traditional theories of error estimation in that it allows the estimation
of modeling error in virtually any quantity of interest to the analyst, such as (mollified)
pointwise values of stresses and displacements, boundary displacements, and averaged
stresses. Concrete examples of such quantities of interest will be given in the section on
numerical experiments.

The goal in this section is to obtain bounds on the quantityL(u)− L(u0) = L(e0),
whereL ∈ V′(Ä) is a continuous linear functional. We first present a result on obtaining
upper and lower bounds onL(e0). Next, we show how this theory can be extended to
obtain bounds on the error inarbitrary admissiblefunctionsz ∈ V(Ä), i.e., bounds on the
quantityL(u)− L(z) = L(u− z), wherez is not necessarily the solution to an elastostatics
problem posed on the domainÄ. The motivation behind this is that the modeling error in
local quantities of interest can often be reduced by adding perturbations to the regularized
solution such that the sum is still an admissible function.

Some comments on why “quantities of interest” are characterized as “continuous linear
functions” are appropriate. It is understood that important local features of the microme-
chanical response are obliterated by homogenization but may be the precise quantities of
interest in determining the performance of the material—stresses at material interfaces,
relative displacements of inclusions, etc. As will be demonstrated in the next section, the
extraction of errors in local features of the response is accomplished by setting up an aux-
iliary (adjoint) problem for an influence functionw in which the data in the problem (the
“right-hand side”) are a customized functional characterizing the particular feature of in-
terest. The characterizing functionalL must be linear and continuous, or else the auxiliary
problem could be meaningless. For example, it would be inappropriate to identify a stress
or displacement at a pointx inÄ as a quantity of interest as the “stress could be infinite” and
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FIG. 1. Schematic of the composite body considered. Dashed lines indicate the partitioning of the domain
into cells.

point displacements are underfined inV(Ä). Instead, we construct averaged or mollified
functions so that the influence function that corresponds to the particular feature of interest
is a well-defined admissible function inV(Ä). Thus, for example,L could represent average
stress components over a small surface area. We give more examples later in Section 5.

3.1. Upper and Lower Bounds on Modeling Errors in Local Quantities of Interest

Let L be a continuous linear functional onV(Ä), L ∈ V′(Ä). As a first step, we first pose
the following globaladjoint fine-scale problem:

Findw ∈ V(Ä) such that

B(v,w) = L(v) ∀ v ∈ V(Ä).
(22)

The solutionw to the adjoint fine-scale problem is referred to as thefine-scale influence
function. The regularized version of this problem is referred to as theadjoint regularized

FIG. 2. Distribution of the quantityζk,upp normalized with respect to the maximum.
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FIG. 3. Plots of the (a)ε11 and (b)ε22 components of the strain tensorε(w0) for the quantity of interestL1.

problemand reads

Findw0 ∈ V(Ä) such that

B0(v,w0) = L(v) ∀ v ∈ V(Ä).
(23)

The solution to this problem will be referred to as theregularized influence function.
In what follows, we sometimes refer to the problems (7) and (9) as theprimal fine-scale
problemandprimal regularized problem, respectively. It is obvious that, under the stated
assumptions onE andE0, the functionsw andw0 exist and are uniquely defined.

It immediately follows that the modeling error in the influence function

ē0 def= w− w0 (24)
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satisfies (recall (16))

B(v, ē0) = Rw0(v) ∀ v ∈ V(Ä). (25)

We also note that̄e0 satisfies the following relationship (analogous to (14)):

ζ̄low ≤ ‖ē0‖E(Ä) = ‖w− w0‖E(Ä) ≤ ζ̄upp, (26)

where

ζ̄low
def= |Rw0(w0)|
‖w0‖E(Ä)

; ζ̄upp
def= ((I0∇w0, I0∇w0))

1/2
E . (27)

We now state the main result of the estimation of modeling error in quantities of interest:

THEOREM 3.1. Let u0 andw0 be the solutions to problems(9) and (23), respectively.
Then,

ηlow ≤ L(e0) ≤ ηupp, (28)

where

ηlow
def= 1

4
(η+low)

2− 1

4
(η−upp)

2+Ru0(w0), (29)

ηupp
def= 1

4
(η+upp)

2− 1

4
(η−low)

2+Ru0(w0), (30)

with arbitrary s∈ R+,

η±upp
def=
√

s2ζ 2
upp± 2((I0∇u0, I0∇w0))E + s−2ζ̄ 2

upp, (31)

and

η±low
def= |Rsu0±s−1w0(u0+ θ±w0)|

‖u0+ θ±w0‖E(Ä)
, (32)

whereζupp and ζ̄upp are defined by(15) and(27), respectively, andθ± is given by

θ± = B(u
0,w0)Ru0(su0± s−1w0)− B(u0, u0)Rw0(su0± s−1w0)

B(u0,w0)Rw0(su0± s−1w0)− B(w0,w0)Ru0(su0± s−1w0)
. (33)

Proof. The outline of the proof is given below; see [6] for details. The error in the
quantity of interest can be decomposed as

L(e0) = B(e0,w) = B(e0, ē0)+ B(e0,w0) = B(se0, s−1ē0)+Ru0(w0), (34)

wheres ∈ R+ is an, as yet, unspecified positive scaling factor. Now, using a simple property
of an inner product, we rewrite the expression (34) as

L(e0) = 1

4
‖se0+ s−1ē0‖2E(Ä) −

1

4
‖se0− s−1ē0‖2E(Ä) +Ru0(w0). (35)
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The first two terms on the right-hand side of (35) can be bounded above by noting that
the quantityse0± s−1ē0 satisfies

B(se0± s−1ē0, v) = Rsu0±s−1w0(v) ∀ v ∈ V(Ä), (36)

and hence

‖se0± s−1ē0‖E(Ä) ≤ η±upp, (37)

with

η±upp
def=
{∫

Ä

I0∇(su0± s−1w0) : EI0∇(su0± s−1w0) dx
}1/2

= {s2ζ 2
upp± 2((I0∇u0, I0∇w0))E + s−2ζ̄ 2

upp

}1/2
.

(38)

To obtain a lower bound on the quantityse0± s−1ē0, we note that

‖se0± s−1ē0‖E(Ä) = ‖Rsu0± s−1w0‖E′(Ä) ≥ |Rsu0±s−1w0(v)|
‖v‖E(Ä)

, (39)

for any v ∈ V(Ä)\{0}. A linear combination ofu0 andw0 of the formv = u0+ θ±w0,
θ± ∈ R, is then used in the above expression to obtain the best possible lower bound. The
valueθ± is found by a simple extremization process. The third termRu0(w0) depends only
on known quantities. ■

It can be shown that the optimal value of the scaling factors is given by

s∗ =
√
‖ē0‖E(Ä)/‖e0‖E(Ä).

However, sincēe0 ande0 are not known exactly, we use

s∗ =
√
ζ̄upp/ζupp.

Also, in our numerical experiments, we employ the followingestimatesof the modeling
error in the quantity of interest:

L(e0) ≈ ηest,upp
def= 1

4
(η+upp)

2− 1

4
(η−upp)

2+Ru0(w0), (40)

and

L(e0) ≈ ηest,low
def= 1

4
(η+low)

2− 1

4
(η−low)

2+Ru0(w0). (41)

An important feature of the theorem above is that the elasticity tensorE0 need not be a
constant function; it need only satisfy the uniform ellipticity and symmetry conditions.
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FIG. 4. Plots of the (a)ε11 and (b)ε22 components of the strain tensorε(w0) for the quantity of interestL2.

3.2. Modeling Error in Quantities of Interest for Admissible Functions

We now demonstrate how to obtain bounds on the quantityL(u− z) for admissible
functionsz ∈ V(Ä), z 6= 0, whereL ∈ V′(Ä) denotes a quantity of interest. We first define,
for s ∈ R+, the functionalJ ±s : V(Ä)→ R,

J ±s (v)
def= 1

2
B(v, v)− (sF ± s−1L)(v), v ∈ V(Ä). (42)

It is easy to see that:

• The functionalJ ±s has a unique minimizerX±s that satisfies

B(χ±s , v) = (sF ± s−1L)(v), ∀ v ∈ V(Ä). (43)
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FIG. 5. Plots of the (a)ε11 and (b)ε22 components of the strain tensorε(w0) for the quantity of interestL3.

Moreover,

χ±s ≡ su± s−1w, (44)

whereu is the unique solution to (7) andw is the unique solution to (22).
• If v ∈ V(Ä), v 6= 0, then, in the spirit of Corollary 2.1, we have

η±low(v) ≤ ‖(su± s−1w)− v‖E(Ä) = ‖χ±s − v‖E(Ä) ≤ η±upp(v), (45)

where

η±upp(v)
def=
√

2(J ±s (v)− J ±s (su0± s−1w0))+ (η±upp)
2, (46)
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and

η±low(v)
def= |(sF ± s−1L)(v)− B(v, v)|

‖v‖E(Ä)
, (47)

whereη±upp is as defined in (31).

These preliminaries bring us to the following result:

THEOREM3.2. Letu0 andw0 be the solutions to problems(9) and(23), respectively. Let
z ∈ V(Ä), z 6= 0, and denote the quantity of interest by L∈ V′(Ä). Moreover, let s∈ R+.
Then, the quantity L(u− z) can be bounded above and below,

ηlow(z) ≤ L(u− z) ≤ ηupp(z) (48)

with

ηlow(z)
def= 1

4
(η+low(sz+ s−1w0))2− 1

4
(η−upp(sz− s−1w0))2+ F(w0)− B(z,w0), (49)

and

ηupp(z)
def= 1

4
(η+upp(sz+ s−1w0))2− 1

4
(η−low(sz− s−1w0))2+ F(w0)− B(z,w0), (50)

andη±upp(v) andη±low(v), v ∈ V(Ä),



36 ODEN AND VEMAGANTI

Later, we will also use the following estimates of the quantityL(u− z):

L(u− z) ≈ ηz
est,upp

def= 1

4
(η+upp(sz+ s−1w0))2− 1

4
(η−upp(sz− s−1w0))2

+F(w0)− B(z,w0), (55)

and

L(u− z) ≈ ηz
est,low

def= 1

4
(η+low(sz+ s−1w0))2− 1

4
(η−low(sz− s−1w0))2

+F(w0)− B(z,w0). (56)

Remark. The definitions of the functionalsL can, in some cases, be extended to non-
linear quantities of interest through linearization. For example, if one is interested in the
squared root-mean-square norm (theL2 norm squared) ofu over a subdomainω ⊂ Ä, then
the nonlinear quantity of interest is

N (u) =
∫
ω

u · u dx. (57)

The modeling error in this quantity of interest is

N (u)−N (u0) =
∫
ω

(u · u− u0 · u0) dx

=
∫
ω

((u0+ e0) · (u0+ e0)− u0 · u0) dx

= 2
∫
ω

u0 · e0 dx+
∫
ω

e0 · e0 dx

≈ 2
∫
ω

u0 · e0 dx. (58)

Then the linearized quantity of interest is given byL(v) = 2
∫
ω

u0 · v dx.

4. GOAL-ORIENTED ADAPTIVE MODELING

One way to overcome the loss of fine-scale information due to regularization techniques
is to use the regularized solution as a starting point in a procedure that adaptively improves
the quality of the solution. Such procedures are common in the context of finite elements
where a coarse mesh solution is used as a starting point and is adaptively improved upon by
refining the mesh. Here, we are concerned with adapting the model of the microstructure
itself. We begin this section by describing a goal-oriented strategy for model adaptation for
a given quantity of interest. We then present an algorithm based on this strategy.

4.1. Adaptive Modeling Strategy

Our strategy for adapting the material model based on modeling error in a quantity of
interestL ∈ V′(Ä) consists of:

1. Solution of the regularized problems (9) and (23) foru0 andw0, respectively.
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FIG. 6. Distribution of the quantities (a)̄ζk,upp and (b)βk, normalized with respect to the maximum, for the
quantity of interestL1.

2. Estimation of the modeling errorL(u− u0) in the quantity of interest using
Theorem 3.1.

3. If required, enhancement of the regularized solutionu0 by taking into account the
fine-scale material features over a “region of influence.”

Let us elaborate further on the third part of our strategy. SupposeÄL ⊂ Ä is determined
to be (in a fashion to be described shortly) the region where the finescale elasticity tensor
E most influences the quantity of interestL. We propose solving a problem onÄL with the
regularized solutionu0 providing the boundary conditions. More precisely, define

0Lt

def= ∂ÄL ∩ 0t , 0Lu

def= ∂ÄL\0Lt . (59)
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FIG. 7. Distribution of the quantities (a)̄ζk,upp and (b)βk, normalized with respect to the maximum, for the
quantity of interestL2.

Define the local function space onÄL as

V(ÄL) = {v ∈ V(Ä), v = 0 onÄ\ÄL , v|0Lu
= 0}. (60)

Next, an extension operatorEL : V(ÄL)→ V(Ä) is introduced, defined by

vL ∈ V(ÄL), EL(vL) = v such thatv|ÄL = vL , v|Ä\ÄL = 0. (61)

The restriction of the regularized solutionu0 to the domain of influenceÄL is defined as

u0
L : u0

L
def= u0|ÄL . ThenũL is sought as the solution to the following weak boundary value

problem:

Find ũL ∈
{

u0
L

}+ V(ÄL) such that
(62)

BL(ũL , vL) = FL(vL) ∀ vL ∈ V(ÄL),
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where the bilinear and linear forms are defined as

BL(ũL , vL)
def=
∫
ÄL

∇vL : E∇ũL dx, (63)

and

FL(vL)
def=
∫
ÄL

f · vL dx+
∫
0Lt

t · vL ds, (64)

respectively. Thus,̃uL is a perturbation onÄL that takes into account the fine-scale mi-
crostructure. Moreover, it equals the primal regularized solutionu0 on the0Lu portion of its
boundary. Using the extension operator introduced earlier, we arrive at alocally enhanced
functionũ ∈ V(Ä) defined as

ũ def= u0+ EL
(
ũL − u0

L

)
. (65)

We now make two observations:

• The locally enhanced solutioñu ∈ V(Ä) is an admissible function and satisfies the
kinematic constraint̃u|0u = 0, even though it is not the solution to a global problem posed
onÄ.
• The modeling error in the quantity of interestL corresponding to the perturbed solu-

tion is L(u)− L(ũ) = L(u− ũ). This quantity can be bounded above and below using
Theorem 3.2.

We now propose a technique to determine the “domain of influence”ÄL . We consider a
nonoverlapping partitionP of the domainÄ into cells2k, 1≤ k ≤ N(P), whereN(P) is
the total number of cells in the partition. Define

ζk,upp
def=
{∫

2k

I0∇u0 : EI0∇u0 dx
} 1

2

(66)

ζ̄k,upp
def=
{∫

2k

I0∇w0 : EI0∇w0 dx
} 1

2

,

and note that

ζ 2
upp=

N(P)∑
k=1

ζ 2
k,upp, ζ̄ 2

upp=
N(P)∑
k=1

ζ̄ 2
k,upp, (67)

whereζupp andζ̄upp were introduced in (15) and (27), respectively. Next, note that the proof
of Theorem 3.1 (see [6]) is based on the decomposition

L(e0) = B(e0, ē0)+ B(e0,w0), (68)

which implies that

|L(e0)| ≤ β def= ζuppζ̄upp+ ζupp‖w0‖E(Ä). (69)
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This suggests that the cellsk in which the quantity

βk
def= ζk,uppζ̄k,upp+ ζk,upp‖w0‖E(2k) (70)

exceeds a tolerance can be picked to constitute the domain of influenceÄL .

4.2. The Goal-Oriented Adaptive Local Solution Algorithm (GOALS)

We begin by considering quantities of interest of the type

L(v) =
∫
ω

l (v) dx, ω ⊂ Ä, (71)

where l is a linear map:l : V(Ä)→ L1
loc(Ä). Our algorithm can be easily modified to

accommodate quantities of interest of other types. The GOALS algorithm can now be
stated as follows:

Step 1: Initialization. Given the initial dataÄ, 0u, 0t , E, f, andt, construct a nonover-
lapping partition of the domainP = {2k}, k = 1.2 . . . N(P). Specify error tolerance pa-
rametersαTOL andδTOL, 0< δTOL < 1.

Step 2: Regularization.Compute the homogenized elasticity tensorE0. Solve the primal
regularized problem (9) foru0 and the adjoint regularized problem (23) forw0.

Step 3: Modeling error estimation.Compute error indicatorsζk, ζ̄k, andβk for 1≤ k ≤
N(P), using (66) and (70). Estimate the modeling error in the quantity of interest using
Theorem 3.1. Denote this estimate byηest.

Step 4: Tolerance test.If ηest≤ αTOL × L(u0), STOP.

Step 5: Domain of influence.Determine initial guess for “domain of influence”ÄL as
all the cells that intersectω, the region over which the quantity of interest is defined:

ÄL = ∪ j∈J2 j J def= { j : 2 j ∩ ω 6= ∅}. (72)

Compute the quantitiesζL , ζ̄L , andβL :

ζL
def=
{∑

k∈J
ζ 2

k,upp

} 1
2

, ζ̄L
def=
{∑

k∈J
ζ̄ 2

k,upp

} 1
2

, βL
def= ζL ζ̄L + ζL‖w0‖E(ÄL ). (73)

Step 6: Update domain of influence.Determine the “bad neighbors” ofÄL ; i.e., if
βi > δTOL × βL , mark2i as bad and updateÄL :

ÄL←ÄL ∪ {bad neighbors}. (74)

Update the quantitiesζL , ζ̄L , andβL .

Step 7: Solution of local problem.Solve local problem (62) onÄL for ũL . Construct
the locally enhanced solutioñu ∈ V(Ä) using (65).

Step 8: Estimate modeling error.Estimate the modeling errorL(u− ũ) using
Theorem 3.2 and denote the estimate byηest. If ηest≤ αTOL × L(ũ), STOP. Else, GOTO
Step 6.
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FIG. 8. Distribution of the quantities (a)̄ζk,upp and (b)βk, normalized with respect to the maximum, for the
quantity of interestL3.

In many applications, the decay of local effects may be very fast, meaning thatÄL is often
small in comparison withÄ
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FIG. 9. Distribution of the quantities (a)̄ζk,upp and (b)βk, normalized with respect to the maximum, for the
quantity of interestL4.

material properties are taken to be(E = 100.0 MPa,ν = 0.2) for the matrix material and
(E = 1000.0 MPa,ν = 0.2) for the inclusions, whereE is the Young’s modulus andν is
the Poisson’s ratio. Plane strain conditions are assumed to hold.

The domain is partitioned intoN(P) = 42 cells as indicated by the dashed lines in Fig. 1
(Step 1 of the GOALS algorithm). Because of the lack of microstructural periodicity, the
homogenized properties of the domain are taken to be the average of the Hashin–Shtrikman
upper and lower bounds [3] (Step 2).

To evaluate the accuracy and effectivity of various bounds, we compute numerical ap-
proximations of reference fine-scale solutionsu andw, since these are not known exactly.
To reduce the influence of approximation error on the results, it is important that the nu-
merical approximations to the fine-scale functions, as well as those to the homogenized
functionsu0 andw0, be computed with very high accuracy. Toward this end, we perform
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all computations using theh-p adaptive finite-element code ProPHLEX [2]. Sampleh-p
meshes are shown later in this section.

5.2. Domains of Influence

Evidently, the amount of microscale information necessary to accurately predict a quantity
of interest depends on the quantity of interest itself. A qualitative approach to determining
the domain of influence of a quantity of interest is now described. Consider the following
quantities of interest:

L1(v) = 1

|ω1|
∫
ω1

σ11(v) dx = 1

|ω1|
∫
ω1

(
C1
∂v1

∂x
+ C2

∂v2

∂y

)
dx,

L2(v) = 1

|ω2|
∫
ω2

ε22(v) dx = 1

|ω2|
∫
ω2

∂v2

∂y
dx, (75)

L3(v) =
∫
ω2

kε(x; x0)v2(x) dx.

The first quantity of interestL1 represents theσ11 component of the stress tensor averaged
over the inclusionω1, shown in Fig. 1, with appropriate material constantsC1 andC2. The
second quantity of interestL2 represents theε22 component of the strain tensor averaged
over the inclusionω2.

The third quantity of interest is amollificationof the y component of the displacement
vector over the inclusionω2. The use of mollification is necessitated by the fact that one
cannot refer to the point-wise values of functions inV(Ä). The mollifier kernelkε(·; x0) is
an infinitely smooth function and its support is a ball of radiusε centered atx0 (denoted
Bε(x0)). We choosex0 andε so thatω2 = Bε(x0). The mollifier kernel has the following
properties [5]:

• It has continuous derivatives of all orders onRN .
• kε(x; x0) = 0 for |x− x0| ≥ ε andkε(x; x0) > 0 for |x− x0| < ε.
• ∫Bε (x0)

kε(x, x0) dx = 1.

First, the primal homogenized solutionu0 is computed by solving (9). The modeling error
indicators for the primal problem,ζk,upp, are then computed using (66). These quantities are
shown in Fig. 2.

Next, the homogenized influence functionsw0 corresponding to the three quantities of
interest defined above are computed by solving (9). In Figs. 3, 4, and 5, we show theε11 and
ε22 components of the strain tensorε(w0) for the quantitiesL1, L2, andL3, respectively.
Recall that it is the strain tensor ofw0 that appears in the various expressions for the modeling
error in a quantity of interest. It is seen that, in the case ofL1 andL2, the components of
ε(w0) are small everywhere except in a small neighborhood of the region of interest. For
the quantity of interestL3, the strains are nonzero over a larger portion of the domainÄ.

The modeling error indicators for the adjoint problems,ζ̄k,upp andβk, are computed using
(66) and (70). The indicatorβk roughly represents the magnitude of the contribution (or the
influence) of a cell to the modeling error in the quantity of interest, and its distribution over
Ä provides a qualitative description of the domain of influence of the quantity of interest.

The quantities̄ζk,upp andβk for L1, L2, L3 are shown in Figs. 6–8. A major difference
between the distribution of the primal and the adjoint error indicators is that the primal
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FIG. 10. Theh-p meshes for the sequence of domains of influence and the resulting modeling errors in the
quantity of interestL4: (a)Ä0

L , (b)Ä1
L , (c)Ä2

L , and (d)Ä3
L .

indicators are global in nature, whereas the adjoint indicators forL1 andL2 are markedly
local. Note that the domain of influence of the quantity of interestL3 is much larger
than it is for L1 and L2. This indicates that more fine-scale information is required to
accurately predict local displacements than is required to predict local stresses or strains.
Also, for the quantity of interestL3, the computation of the indicators was repeated with
ε, the mollification kernel radius, reduced by half. The change in the distribution of the
normalized error indicators was found to be negligible, suggesting that the nonlocality of
the distribution of these error indicators is quite insensitive toε.

5.3. Error Estimation and Adaptive Modeling

Here, the adaptive modeling strategy proposed earlier is used to determine a material
model that accurately predicts the quantity of interest

L4(v) = 1

|ω3|
∫
ω3

σ11(v) dx = 1

|ω3|
∫
ω3

(
C1
∂v1

∂x
+ C2

∂v2

∂y

)
dx, (76)
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TABLE I

Effectivity Indices of the Estimates

Associated with the Primal Problem

Error estimate Effectivity index

ζupp

‖u− u0‖E(Ä)

1.085

ζlow

‖u− u0‖E(Ä)

0.494

whereω3 is the region occupied by the inclusion indicated in Fig. 1. This quantity of interest
is the average of theσ11 component of the stress tensor on the inclusionω3 (with appropriate
material constantsC1 andC2).

After the homogenized influence functionw0 is computed, the modeling error indicators
ζ̄k,upp, andβk are computed using (66) and (70). In Fig. 9 we show the normalized quantities
ζ̄k,upp, andβk, 1≤ k ≤ 42. Again, note the highly local nature of the error indicatorsζ̄k,upp

andβk.
To assess the quality of the error bounds and estimates computed in this step of the

GOALS algorithm, we use the notion of aneffectivity index. For a given error estimate, the
effectivity index is defined as the ratio of the estimated error to the true error. In our case,
we compute the “true error” using the reference solutionsu andw. The closer the effectivity
index is to unity, the better the quality of the estimate. Thus, the effectivity index of the upper
bound on the homogenization errorζupp introduced in (15) isζupp/‖u− u0‖E(Ä). First, the
effectivity indices of the estimates corresponding to the primal problem are shown Table I.
We see that the upper boundζupp is very close to true homogenization error‖u− u0‖E(Ä),
whereas the lower bound is inefficient.

The effectivity indices of the estimates associated with the adjoint problem are next shown
in Table II. For the adjoint problem, both the upper and lower bounds on‖w− w0‖E(Ä)

are seen to be accurate. The boundsηupp andηlow on the modeling error in the quantity
of interest are far from unity as expected; for a detailed analysis of the accuracy of these

TABLE II

Effectivity Indices of the Estimates As-

sociated with the Adjoint Problem Corre-

sponding to the Quantity of InterestL

Error estimate Effectivity index

ζ̄upp

‖w− w0‖E(Ä)

1.123

ζ̄low

‖w− w0‖E(Ä)

0.994

ηupp

L(e0)
−162.7

ηlow

L(e0)
161.4

ηest,low

L(e0)
0.709

ηest,upp

L(e0)
−2.028
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bounds, see [6]. We see that the estimateηest,low alone has a reasonable effectivity index.
In our experience, this estimate has performed consistently and can be used to drive the
adaptive process.

The relative modeling error in the quantity of interestL4, defined asL4(u− u0)/L4(u),
is found to be 74.3%. To reduce this error, we adapt the material model as follows. The cell
containing the inclusionω3 is chosen as an initial guess for the domain of influenceÄ0

L (with
the superscript indicating that this is the initial guess for the domain of influence). Note that
this is the cell with the largest error indicatorβk. The local problem (62) is solved on this
cell using a well-resolvedh-p adaptive mesh, and the enhanced solutionũ is constructed.
The error in the quantity of interest is reduced and we findL4(u− ũ)/L4(u) = 35.2%.

The material model is further adapted by adding neighboring cells toÄ0
L . The resulting

regions and the associated errors are shown in Fig. 10. In each case, we solve a local problem,
as described above, and construct the enhanced solution(ũ). Figure 10 shows that to reduce
the modeling error to below 5% (which is considered “engineering tolerance”), it would
suffice to stop the adaptive algorithm after computing the enhanced solution(ũ) onÄ2

L .

6. SUMMARY AND CONCLUSIONS

The concept of adaptive modeling of materials makes no assumptions about the exis-
tence of representative volume elements (RVEs) or the periodicity of microstructure, as is
usual in the traditional analysis of composites. Using regularization as part of a larger al-
gorithm, adaptive modeling attempts to deliver material models that satisfy preset accuracy
requirements.

In this work, we present a new theory for thegoal-orientedadaptive modeling of hetero-
geneous materials and an algorithm for adapting material models based on our theory of
local modeling error estimation. Preliminary numerical examples demonstrate the advan-
tages that such modeling techniques have over traditional methods. Extensive numerical
experiments, details of a parallel computational infrastructure for the adaptive modeling
of heterogeneous materials, incorporation of imaging technology into such analyses, and
extensions to nonlinear problems are subjects to be addressed in future work.
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